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Abstract

We introduce a new method to eliminate instrumental asymmetries in spin resolved photoemis-

sion with excitation by unpolarized light. The new method is applied successfully to analyze the

spin polarizations in the valence band and 4d core level photoemission, excited with unpolarized

light from a nonmagnetic Pt crystal. It is also applied to the spin analysis of the 2p core level

photoemission, generated with circularly polarized x-rays from magnetic Fe. We argue that this

new method can be used for spin analysis in spin resolved photoemission, with both unpolarized

(linearly polarized) light and circularly polarized light from nonmagnetic and magnetic materials.
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I. INTRODUCTION

In photoemission investigations of magnetic and nonmagnetic materials, the measurement

of the electron spin polarization with respect to a suitably chosen quantization direction can

provide new insight into the electronic structure of the systems under study, which cannot

be gleaned from the energy and momentum relationship of the photoelectrons [1–3]. The

most common method for the electron spin polarization is the measurement of the left-right

scattering asymmetry of an electron beam with spin polarization normal to the scattering

plane [4–9]. This left-right scattering asymmetry based on Mott scattering is characterized

by an asymmetry A defined by

A =
NL −NR

NL + NR

, (1)

where NL and NR are the numbers of electrons scattered to the left and the right, respectively.

From this asymmetry A, one can determine the spin polarization P by

P =
1

Seff

A, (2)

if the effective Sherman function Seff , which represents the sensitivity of the target, is known.

From Eq. (2), it is clear that the accurate measurement of the asymmetry A, with the accu-

rate knowledge of Seff results in the accurate spin polarization P . In the real measurements

of the spin polarization, however, the asymmetry A measured contains not only the asymme-

try induced by the physical events, but also the instrumental asymmetry originating from

the experimental errors. Experimental evidence indicates strongly that the instrumental

asymmetry depends not only on the energy of the electron, but also on time. If Seff is well

known, in fact, the accuracy of experimental data is limited not only by statistics, but also

by the uncertainty in elimination of the instrumental asymmetry.

In spin resolved photoemission experiments with circularly polarized light, the instrumen-

tal asymmetry can be eliminated using the two helicities of the circularly polarized light,

under the condition that the instrumental asymmetry does not change over time. Due to

the symmetry, the flipping of the helicity results in the reverse of the spin polarization while

leaving the instrumental asymmetry unchanged [10, 11]. (This helicity flipping is completely

analogous to that traditionally done in spin resolved spectroscopy, where magnetization flip-

ping reverses the spin polarization while leaving the instrumental asymmetry as is). It is

especially crucial to eliminate the instrumental asymmetry quantitatively if one works with
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unpolarized (or linearly polarized) light in which the helicity of the light, and therefore the

spin polarization cannot be reversed [11]. Therefore, our goal in this paper is to introduce a

new method to eliminate the instrumental asymmetries in the spin resolved photoemission

when unpolarized light is used.

II. OVERVIEW OF SPIN RESOLVED PHOTOEMISSION WITH UNPOLAR-

IZED LIGHT

Fig. 1 illustrates an overview of the spin resolved photoemission system with unpolarized

light installed at the Lawrence Livermore National Laboratory [12, 13]. As the photon

sources, there are two unpolarized ultraviolet lights (UV1 and UV2) located in X-Z plane

at an angle of 45◦ and −45◦ with respect to the surface normal of the sample, respectively,

and an unpolarized x-ray source (Mg Kα and Al Kα) located in Y-Z plane at an angle of

45◦ with respect to the surface normal of the sample. The advantage of the two UV sources

is that they provide a possibility to remove the instrumental asymmetry as will be shown

in section IV. The energies of the photoelectrons are analyzed by the hemispherical electron

energy analyzer. The electrons in the central part of the exit plane are directed through an

aperture into the acceleration lens. The electrons accelerated through the acceleration lens

hit a Thorium target at 25 kV for their spin analysis. The electrons scatter from the target

and after being decelerated to almost ground potential, they are detected by 4 channeltrons

in the Mott detector. In the Mott detector, the two transversal spin components PX and

PY are determined simultaneously [4, 5].

III. MOTT SCATTERING

The physical principal of Mott detection is based on the left-right scattering asymmetry

caused by the spin-orbit interaction in the electron-atom scattering [4, 5]. Consider a scat-

tering of a high energy electron by a nucleus of charge Ze. The motion of the electron in the

electric field E of the nucleus results in a magnetic field B in the electron rest frame induced

by the Lorentz transformation of the electric field. The interaction between the magnetic

field B and the electron spin magnetic moment creates an additional spin-orbit term Vso in

the scattering potential. The presence of the spin-orbit term Vso in the scattering potential
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introduces a spin dependence in the scattering cross section which can be written

σ(θ, φ) = I(θ)[1 + Seff(θ)P · n̂], (3)

where I(θ) is the intensity without the spin-orbit term Vso, P is the polarization vector

of the incident electron beam, n̂ is the unit vector normal to the scattering plane defined

by the momentum of the incident electrons and the momentum of the scattered electrons

in the following n̂ = k×k′
|k×k′| . The Eq. (3), which is independent of the choice of coordinate

system because the scalar product is invariant under coordinate transformations, is the basic

equation for the measurement of the spin polarization by Mott scattering. An essential

feature of Eq. (3) is that only the component of the polarization vector perpendicular to the

scattering plane contributes to the scattering asymmetry while components parallel to the

scattering plane make no contribution. Therefore, as shown in Figs. 1 and 2, spin component

PY can be measured by counters 3 and 4 (not counters 1 and 2) while spin component PX

can be measured by counters 1 and 2. Another point to be mentioned about Eq. (3) is

that for a given spin polarization, P · n̂ is always a positive value for the left counter and

a negative value for the right counter. For example, for PY (PX), P · n̂ is always positive

value for the left counter 3(1) and negative value for the right counter 4(2) in Figs. 1 and 2.

Therefore, Mott scattering is always called to be based on “left-right” scattering asymmetry

(not “right-left”). Fig. 3 shows the azimuthal angle (φ) dependency of the scattering

cross section σ(θ, φ) according to the Eq. (3). It is worth noting that there would be no

azimuthal angle dependency of the scattering cross section if the effective Sherman function

Seff(θ) becomes zero. For example, Seff(θ) approaches zero under the small scattering angle

θ [5].

IV. DETERMINATION OF ELECTRON SPIN POLARIZATION

It is an essential task to determine the spin polarization with the Mott detector. In

order to illustrate how the spin polarization can be determined with the Mott detector, the

counting rates at the counters 1, 2, 3, and 4 located in the back scattering direction as

shown in Fig. 1 are denoted as N1, N2, N3, and N4 . For PY (PX) component, the counter

3 (counter 1) is in the left side and the counter 4 (counter 2) is in the right side. As the

physical principle of Mott detection is based on the left-right scattering asymmetry caused
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by the spin-orbit interaction, in principle, the different counting rates between N3 and N4(N1

and N2) allow to evaluate the spin polarization PY (PX), according to the Eqs. (1) and (2),

provided that the Seff is known.

However, in real experiments, the experimental setup usually involves instrumental asym-

metries. The instrumental asymmetries are caused by: (i) different counter efficiencies, e.g.

given by different solid angles accepted by the counters or different windows of the counters;

and (ii) misalignment of the incident beam, e.g. parallel shift or oblique incidence with

respect to the ideal axis (called false asymmetries) [10, 11]. These instrumental asymme-

tries have to be eliminated, otherwise the measured spin polarization cannot be claimed to

be accurate. Indeed, elimination of these instrumental asymmetries is not easy, especially

when unpolarized (linearly polarized) light as excitation source is used. In the following

subsections it will be described how the instrumental asymmetries can be eliminated in the

measurements with unpolarized light.

A. Circularly polarized radiation

The main purpose of this publication is to demonstrate how the instrumental asymmetries

can be eliminated when unpolarized light is used as excitation source. But let us digress to

show the case with circularly polarized light first. The instrumental asymmetries indicated

above can be eliminated completely by using circularly polarized light (σ+, σ−) [11]. Let

us use our experimental setup at the Advanced Photon Source (APS) as shown in Fig. 4

to explain the case [14–16]. Circularly polarized light from the APS hits the sample and

furthermore we assume that we measure the spin component PZ by using counters 1 and 2

in Fig. 4. The experimental setup shown in Fig. 4 is basically identical to the experimental

setup shown in Fig. 1, except for that Fig. 4 has a 90◦ deflector. The role of the 90◦ deflector

is to transfer a longitudinal polarization component to a transversal polarization component

as shown in inset of Fig. 4. Before the deflector, the spin polarized electron beam moves

along Z-direction with a longitudinal component PZ and the two transversal components PX

and PY . When the spin polarized electron beam is deflected by 90◦ in an electrostatic field,

the velocity of the spin polarized electron beam is changed from Z-direction to X-direction,

but its spin components are kept unchanged in the nonrelativistic approximation, so that

the PZ becomes transverse and PX becomes longitudinal. Therefore, the spin component PZ
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can be measured in Mott detector since only two transversal components can be measured

in Mott detector. The spin component PZ cannot be measured in the experimental setup

shown in Fig. 1 because PZ is a longitudinal component in Fig. 1.

Circularly polarized light creates a spin component which is aligned along the photon

propagation direction [5]. This means that if circularly polarized light lying in the X-Z

plane in Fig. 4 hits the sample, it can create a spin component PZ . Denoting the efficiencies

of the counters 1 and 2 by W1 and W2, respectively, for σ+ light, one measures the intensities

in the Mott detector [11]:

N1(σ
+) ∼ W1(1 + PZSeff)(1 + Af ), (4)

N2(σ
+) ∼ W2(1− PZSeff)(1− Af ), (5)

where Af denote the false asymmetry caused by instrumental misalignments. By changing

the helicity from σ+ to σ−, only the spin polarization is reversed and it follows,

N1(σ
−) ∼ W1(1− PZSeff)(1 + Af ), (6)

N2(σ
−) ∼ W2(1 + PZSeff)(1− Af ). (7)

From the Eqs. (4-7) one obtains the following relation

Q ≡
√(

N1(σ+)

N2(σ+)

/
N1(σ−)

N2(σ−)

)

=

√(
W1

W2

)(
1 + PZSeff

1− PZSeff

)(
1 + Af

1− Af

)(
W2

W1

)(
1 + PZSeff

1− PZSeff

)(
1− Af

1 + Af

)

=
1 + PZSeff

1− PZSeff

.

(8)

Eq. 8 shows that the counter efficiencies W1 and W2 as well as the false asymmetry Af

are completely eliminated. Therefore, the spin polarization PZ can be calculated from the

counting rates N1(σ
±) and N2(σ

±) by

PZ =
1

Seff

(
Q− 1

Q + 1

)
=

1

Seff

(√
N1(σ+)N2(σ−)−

√
N2(σ+)N1(σ−)√

N1(σ+)N2(σ−) +
√

N2(σ+)N1(σ−)

)
. (9)

It is very important to note that in order to determine the spin polarization PZ using the

Eq. (9), the instrumental asymmetry Ains
Z defined in the following way

Ains
Z =

√
N1(σ+)N1(σ−)√
N2(σ+)N2(σ−)

(10)
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has to be monitored for every run [5]. If Ains
Z differs from 1, this means that there is an

instrumental asymmetry. The instrumental asymmetry can be eliminated by using the Eq.

(9) only if Ains
Z does not vary in time [5]. Therefore, monitoring of Ains

Z provides an important

check on the performance of the Mott detector. If Ains
Z is not constant over runs, the spin

polarization determined by using Eq. (9) cannot be claimed to be accurate.

In order to illustrate the situation clearly, the spin resolved photoelectron spectra from Ce

3d5/2 measured with the experimental setup shown in Fig. 4 with circularly polarized light

of hν=1350 eV are presented in Fig. 5. It should be mentioned that since this paper aims

to describe the technical method to determine the spin polarization using Mott detector,

the physical mechanism for the spin polarization is discussed in another publication [14].

Fig. 5 contains the three independent measurements collected in sequence (Sets 1,2,3). For

example, for Set 1: with σ+, the kinetic energies of the 3d5/2 photoelectrons are scanned,

which produced N1(σ
+) and N2(σ

+). After that, with σ−, the identical kinetic energies

are scanned, which produces N1(σ
−) and N2(σ

−). Then using Eqs. (9) and (10), the spin

polarization PZ and the instrumental asymmetry Ains
Z are calculated and shown in middle

and bottom panels, respectively, of Fig. 5. The spin-separated partial intensities for spin

parallel I+ and antiparallel I− to the photon propagation direction are derived from the

spin integrated total intensity I (I=N1(σ
+) + N2(σ

+) + N1(σ
−) + N2(σ

−)) and the spin

polarization PZ using I± = (I/2)(1± PZ), and they are shown in the top panels of Fig. 5.

In order to compare the instrumental asymmetries and the spin polarizations carefully,

the instrumental asymmetries and the spin polarizations from the three Sets of Fig. 5 are

overlapped in Fig. 6. By co-plotting the instrumental asymmetries for the three Sets, we

notice that there are instrumental asymmetries because Ains
Z differ from 1 for the all three

Sets. Furthermore, Ains
Z overlaps well for Sets 1 and 2 within the statistical error bars while

Ains
Z from Set 3 deviates significantly from the Sets 1 and 2. What this means is that there

is an instrumental asymmetry which keeps constant during the measurements for Sets 1 and

2, but it is changed during the measurement for Set 3. As mentioned above, if Ains
Z changes

during the measurement, the consequence is that it causes a wrong polarization. A clear

example for such wrong polarization is the large spin polarizations at the outsides of the

peak as indicated as arrows in Set 3 of Fig. 5. In principle, the spin polarization is supposed

to be zero at the outsides of the peak because there is no physical mechanism to be spin

polarized for nonmagnetic materials. As a result, Set 3 cannot be used to determine the
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spin polarization. Only Sets 1 and 2 may be used.

In general, instrumental asymmetry changes with time. Therefore, it would be wise to

measure a Set as short as reasonably possible, so that the Set can be completed before

instrumental asymmetry changes. Through this way, many Sets should be accumulated to

improve the statistics and confirm the consistency of each measurement.

From the law of error propagation, the single statistical errors for ∆PZ and ∆Ains
Z can be

expressed in terms of N1(σ
±) and N2(σ

±) by

∆PZ =

√√√√∑

σ±

(
∂PZ

∂N1(σ±)

)2

(∆N1(σ±))2 +
∑

σ±

(
∂PZ

∂N2(σ±)

)2

(∆N2(σ±))2

=
1

Seff

√√√√√√
4
√

N1(σ+)N2(σ−)
√

N2(σ+)N1(σ−)(√
N1(σ+)N2(σ−) +

√
N2(σ+)N1(σ−)

)3 ,

∆Ains
Z =

√√√√∑

σ±

(
∂Ains

Z

∂N1(σ±)

)2

(∆N1(σ±))2 +
∑

σ±

(
∂Ains

Z

∂N2(σ±)

)2

(∆N2(σ±))2

=
1

2
Ains

Z

√∑

σ±

(
1

N1(σ±)

)
+

∑

σ±

(
1

N2(σ±)

)
.

(11)

For the errors ∆Ni(σ
±) of the individual measurements, the statistical errors

√
Ni(σ±) have

been substituted. These equations have been used to produce the error bars in Figs. 5 and

6.

B. Unpolarized light

It is especially difficult to eliminate the instrumental asymmetries quantitatively if one

works with linearly polarized or unpolarized light in which the helicity of light, and therefore

the spin polarization cannot be reversed completely [11]. However, as will be shown in this

subsection, we introduce a new method to eliminate the instrumental asymmetries.

Let us assume that unpolarized light from the UV1 shown in Fig. 1 hits the sample, and

that we measure the spin component PY . The counting rates N3(un), N4(un) of the back

scattering counters 3 and 4 are given by [11]

N3(un) ∼ W3(1 + PY Seff)(1 + Af ), (12)

N4(un) ∼ W4(1− PY Seff)(1− Af ). (13)
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Now, let us consider the case where PY = 0, i.e., there is no spin polarization due to the

real physical event. If the counting rates for PY = 0 are denoted by N0
3 (un) and N0

4 (un),

respectively, the Eqs. (12) and (13) can be written

N0
3 (un) ∼ W3(1 + Af ), (14)

N0
4 (un) ∼ W4(1− Af ). (15)

From Eqs. (14) and (15), the pure instrumental asymmetry A0
Y for PY = 0 is defined by

A0
Y ≡

N0
3 (un)− N0

4(un)

N0
3 (un) + N0

4(un)
=

W3(1 + Af )−W4(1− Af )

W3(1 + Af ) + W4(1− Af )
. (16)

Now, using Eqs. (12-16) we define the asymmetry AY which includes both the pure instru-

mental asymmetry A0
Y and the asymmetry caused by the real physical spin polarization

AY ≡ N3(un)− N4(un)

N3(un) + N4(un)

=
W3(1 + Af )(1 + PY Seff)−W4(1− Af )(1− PY Seff)

W3(1 + Af )(1 + PY Seff) + W4(1− Af )(1− PY Seff)

=

(
W3(1 + Af )−W4(1− Af )

)
+

(
(W3(1 + Af ) + W4(1− Af )

)
PY Seff

(
W3(1 + Af ) + W4(1− Af )

)
+

(
W3(1 + Af )−W4(1− Af )

)
PY Seff

=
A0

Y + PY Seff

1 + A0
Y PY Seff

.

(17)

Therefore, from Eq. (17) the spin polarization PY can be written

PY =
1

Seff

(
AY − A0

Y

1− AY A0
Y

)
. (18)

The Eq. (18) indicates that the spin polarization PY can be determined by means of the

counting rates N3(un) and N4(un) given by Eqs. (12) and (13) if the pure instrumental

asymmetry A0
Y is known.

In order to explain how the Eq. (18) works, the spin resolved photoemission spectra

obtained with unpolarized UV1 and UV2 from the valence-bands of Pt(001) are presented

in Fig. 7(b) and (c), respectively. In the bottom panel of Fig. 7(b), the asymmetry AY ,

which contains the pure instrumental asymmetry A0
Y and the real physical asymmetry, is

plotted as a function of the binding energy. To use Eq. (18), we have to assume the pure

instrumental asymmetry A0
Y behaves in a reasonable way. First, we assume that the A0

Y
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does not vary in time. Second, we assume that the spin polarization should be zero at

the outsides of the peak and at the between peaks because there is no physical mechanism

for nonzero spin polarization in nonmagnetic materials. Based on these assumptions, a

reasonable A0
Y is assumed as a line shown in the bottom panel of Fig. 7(b). If we know the

pure instrumental asymmetry A0
Y , the spin polarization PY can be calculated with Eq. (18)

as shown in the middle panel of Fig. 7(b). Fig. 7 (c) shows the spin resolved photoemission

spectra obtained with UV2. Since UV2 is symmetric to UV1 along Z-direction, the spin

polarization measured with UV2 should be identical to the one measured with UV1, except

for that the sign of the spin polarization is reversed. Similarly to the measurement with

UV1, the pure instrumental asymmetry A0
Y is assumed as a line shown in the bottom panel

of Fig. 7 (c), and then the spin polarization is calculated using Eq. (18) as shown in the

middle panel of Fig. 7 (c). Comparison between the measurements with UV1 and UV2

shows identical polarization within the error bars, with reversed sign.

Fig. 8 shows spin resolved photoemission spectra excited with unpolarized x-rays

(hν=1253.6 eV) from the 4d5/2 and 4d3/2 core levels of Pt(001), for the two spin com-

ponents PX and PY . As shown in Fig. 1, the x-ray tube is located in the Y-Z plane at an

angle of 45◦ with respect to the surface normal. By the symmetry reason, the spin compo-

nent PX , which is perpendicular to the reaction plane defined by the incident photons and

the outgoing electrons, is spin polarized while PY , which is parallel to the reaction plane, is

unpolarized [12, 13]. Let us consider the PX component first. The asymmetry AX is plotted

in the bottom panel of Fig. 8 (a). In order to determine the spin polarization PX using Eq.

(18), the pure instrumental asymmetry A0
X is assumed as a line shown in the bottom panel

of Fig. 8 (a). Here, also the two conditions are assumed that the A0
Y does not vary in time,

and that the spin polarization should be zero at the outsides of the peak and at the between

peaks. The middle panel of Fig. 8 (a) shows the resulting spin polarization PX . Similarly,

the spin polarization PY is determined and shown in Fig. 8 (b).

From the above examples, it is clear that the Eq. (18) is a useful way to determine the

spin polarizations in the spin resolved photoemission with unpolarized light which does not

have two helicities.

Considering that we have developed a format for a helicity flip that is analogous to a

magnetization flip in magnetic systems, it is reasonable to inquire whether a format for a

geometry flip with unpolarized light would also be feasible. Since there are two photon
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sources (UV1 and UV2), which are in symmetry along the Z-direction as shown in Fig. 1,

the following method is also possible. With UV1, the counting rates N3(UV1) and N4(UV1)

can be written

N3(UV1) ∼ W3(1 + PY Seff)(1 + Af ), (19)

N4(UV1) ∼ W4(1− PY Seff)(1− Af ). (20)

With UV2, since only spin polarization is reversed, the counting rates N3(UV2) and N4(UV2)

can be written

N3(UV2) ∼ W3(1− PY Seff)(1 + Af ), (21)

N4(UV2) ∼ W4(1 + PY Seff)(1− Af ). (22)

From the Eqs. (19-22) one obtains the following relation

R ≡
√(

N3(UV1)

N4(UV1)

/
N3(UV2)

N4(UV2)

)

=

√(
W3

W4

)(
1 + PY Seff

1− PY Seff

)(
1 + Af

1− Af

)(
W4

W3

)(
1 + PY Seff

1− PY Seff

)(
1− Af

1 + Af

)

=
1 + PY Seff

1− PY Seff

.

(23)

Therefore, from Eq. (23)

PY =
1

Seff

(
R− 1

R + 1

)
=

1

Seff

(√
N3(UV1)N4(UV2)−

√
N4(UV1)N3(UV2)√

N3(UV1)N4(UV2) +
√

N4(UV1)N3(UV2)

)
. (24)

Analogue to Eq. (10), the instrumental asymmetry Ains
Y can be defined

Ains
Y =

√
N3(UV1)N3(UV2)√
N4(UV1)N4(UV2)

. (25)

The Fig. 7 (a) illustrates the spin polarization PY determined by using the Eq. (24) with

the counting rates N3(UV1), N4(UV1), N3(UV2), and N4(UV2). The spin polarizations

determined by Eq. (18) and Eq. (24) are identical within the statistics of the experiment.

The bottom panel of Fig. 7(a) shows an overlap of the two asymmetries AY (UV1) for UV1

and AY (UV2) for UV2. If UV1 and UV2 were aligned perfectly, the asymmetries AY (UV1)

and AY (UV2) would be totally symmetrical each other because geometry flip between UV1

and UV2 changes the spin polarization only. But a careful comparison between the two
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asymmetries indicates that they are not totally symmetrical. This means that the geometry

flip between UV1 and UV2 fails to remove the instrumental asymmetry completely using

Eq. (24). Even so, the geometry flip using Eq. (24) is a very useful method to eliminate

instrumental asymmetries involved.

The single statistical errors for Eqs. (17), (18) and (24) are given by

∆AY =

√(
∂AY

∂N3(un)

)2

(∆N3(un))2 +

(
∂AY

∂N4(un)

)2

(∆N4(un))2

=

√√√√√
4N3(un)N4(un)(

N3(un) + N4(un)

)3 ,

∆PY =

√(
∂PY

∂AY

)2

(∆AY )2 +

(
∂PY

∂A0
Y

)2

(∆A0
Y )2

=
1

Seff

(1− (A0
Y )2)

(1− AY A0
Y )2

∆AY

=
1

Seff

(1− (A0
Y )2)

(1− AY A0
Y )2

√√√√√
4N3(un)N4(un)(

N3(un) + N4(un)

)3 ,

∆PY =

√√√√∑
i=1,2

(
∂PY

∂N3(UVi)

)2

(∆N3(UVi))2 +
∑
i=1,2

(
∂PY

∂N4(UVi)

)2

(∆N4(UVi))2

=
1

Seff

√√√√√√
4
√

N3(UV1)N4(UV2)
√

N4(UV1)N3(UV2)(√
N3(UV1)N4(UV2) +

√
N4(UV1)N3(UV2)

)3 .

(26)

C. Magnetic materials

In this subsection, we will show that the method developed above can be applied for the

magnetic system in which an external magnetic field is applied. We present the spin resolved

2p core level photoemission spectra from thin film Fe, which are measured with circularly

polarized light at the APS using the experimental setup shown in Fig. 4.

Under the experimental geometry given in Fig. 4, circularly polarized light (σ+) hits the

magnetic Fe thin film. The spin component PY is measured with a fixed helicity (σ+) by

applying external magnetic fields Mup parallel to the Y-direction and Mdown antiparallel

to the Y-direction. With Mup, we measure the counting rates N3(M
up) and N4(M

up), and
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with Mdown, we measure the counting rates N3(M
down) and N4(M

down). Using these counting

rates, Eq. (9) can be used to determine the spin polarization PY by substituting Z → Y ,

N1(σ
+) → N3(M

up), N2(σ
+) → N4(M

up), N1(σ
−) → N3(M

down), N2(σ
−) → N4(M

down).

PY can be written

PY =
1

Seff

(√
N3(Mup)N4(Mdown)−

√
N4(Mup)N3(Mdown)√

N3(Mup)N4(Mdown) +
√

N4(Mup)N3(Mdown)

)
. (27)

From the Eq. (10) the instrumental asymmetry Ains
Y can be written

Ains
Y =

√
N3(Mup)N3(Mdown)√
N4(Mup)N4(Mdown)

. (28)

Fig. 9 shows the spin resolved 2p spectra from the thin film Fe. In the bottom panel of

Fig. 9 (a), according the Eq. (28), the instrumental asymmetry Ains
Y is plotted as a function

of kinetic energy. The Ains
Y is fairly well constant over the entire energy range. The spin

polarization PY is determined by the Eq. (27) and presented in the middle of Fig. 9 (a).

It should be mentioned that the reason why the two magnetic fields Mup and Mdown are

needed in Eq. (27) is only to eliminated the instrumental asymmetry involved. If there

were no instrumental asymmetry involved, a measurement with Mup would produce a spin

polarization while a measurement with Mdown would produce the identical spin polarization

with opposite sign.

As shown in Fig. 9 (b) and (c), the spin polarization PY can also be determined with a

magnetic field only using Eq. (18). Let us consider the case with Mup as shown in Fig. 9 (b).

In the bottom panel of Fig. 9 (b) the asymmetry AY = [N3(M
up)−N4(M

up)]/[N3(M
up) +

N4(M
up)] is plotted as a function of kinetic energy. In order to use Eq. (18) a pure in-

strumental asymmetry A0
Y is assumed as shown in a line. The resulting spin polarization is

shown in the middle panel of Fig. 9 (b). It is clear that this spin polarization is identical

to the one determined with the Eq. (27). Similarly, the determination of the spin polar-

ization with Mdown only is shown Fig. 9 (c). The spin polarizations determined with Mup

and Mdown are identical, but they have reversed sign as expected. Fig. 9 shows that the

spin polarization can be determined either by the Eq. (27) where two magnetic fields Mup

and Mdown are used to eliminate the instrumental asymmetry, or by Eq. (18) where a pure

instrumental asymmetry A0
Y is assumed.

13



V. CONCLUSION

We have introduced a new method to eliminate the instrumental asymmetries in the

spin resolved photoemission with unpolarized light. This new method is applied to extract

the spin polarizations in the valence band and in the 4d core level photoemission from

nonmagnetic Pt with unpolarized lights, as well as in the 2p core level photoemission from

the magnetic Fe with circularly polarized light. It is concluded that this new methods can be

used for the elimination of the instrumental asymmetries in the spin resolved photoemission

with unpolarized and circularly polarized light from magnetic and nonmagnetic materials.

Finally, it is worth to note the following. We have extended the usual approach for the

removal of instrumental asymmetry, from magnetization flipping to helicity flipping and

even geometry flipping. In general, the magnetization flipping is the best behaved, with a

constant instrumental asymmetry near 1.1. The helicity flipping and geometry flipping are

not quite as well behaved, but still fall within acceptable behavior for spin analysis.
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FIG. 1: (Color online) Sketch for the spin resolved photoemission spectroscopy at the Lawrence

Livermore National Laboratory. There are two unpolarized UV sources (UV1 and UV2) in the

X-Z plane and an unpolarized x-ray source in the Y-Z plane. The energies and the spins of the

photoelectrons are analyzed by the hemispherical electron energy analyzer and the Mott detector,

respectively. Two transversal spin components PX and PY can be measured in Mott detector

simultaneously.
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FIG. 2: (Color online) Left-right scattering asymmetry. An electron beam incoming along the

Z-direction is back scattered at an scattering angle θ. According to Eq. (3), an electron beam

polarized in the Y-direction results in maximum intensity I(θ)[1 + Seff(θ)] at the counter 3 (left

side) and minimum intensity I(θ)[1 − Seff(θ)] at the counter 4 (right side). An electron beam

polarized in the X-direction results in maximum intensity I(θ)[1 + Seff(θ)] at the counter 1 (left

side) and minimum intensity I(θ)[1−Seff(θ)] at the counter 2 (right side). Here, θ is the scattering

angle (or polar angle) and φ is the azimuthal angle.
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FIG. 3: (Color online) Azimuthal angle (φ) dependency of the scattering cross section σ(θ, φ),

according to the Eq. (3). It is worth noting that there would be no azimuthal angle dependency

of the scattering cross section, σ(θ, φ) = I(θ) for all φ, if the effective Sherman function Seff(θ) is

zero.
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FIG. 4: (Color online) Sketch for the spin resolved photoemission spectroscopy at the Advanced

Photon Source. Circularly polarized light creates the spin polarized photoelectrons. The energies

of the photoelectrons are analyzed by the hemispherical energy analyzer. After that, the photo-

electrons are deflected by 90◦ in an electrostatic deflector. After the deflection, the photoelectrons

are accelerated with 25 keV into the Mott detector for their spin analysis. In the Mott detector,

the two transversal spin components PY and PZ can be measured. The role of the 90◦ deflector,

which transfers a longitudinal component to a transversal component and vise versa, is shown in

the inset. By passing the 90◦ deflector, the spin component PZ is transformed from a longitudinal

component to a transversal component while PX is transformed from a transversal component to

a longitudinal component. Therefore, PX cannot be measured in the Mott detector. PY stays as

a transversal component in this configuration.
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FIG. 5: (Color online) Spin resolved 3d5/2 photoelectron spectra of Ce generated with circularly

polarized light of hν=1375 eV. Set 1, Set 2 and Set 3 are independent measurements in sequence.

Top panels: I is the spin integrated total intensity while I+ and I− are the two spin separated

partial intensities. I is separated into the partial intensities for spin parallel I+ (antiparallel I−)

to the photon propagation direction, by means of I± = (I/2)(1 ± PZ). The vertical error bars

∆I± given in I+ and I− represent the single statistical uncertainties included. They are calculated

via ∆I± = (I/2)∆PZ . Middle panels: electron spin polarization PZ determined by Eq. (9). In

determining the spin polarization, Eq. (9) is normalized by light polarization Pσ and cos 55◦ due

to the 55◦ off-normal incidence of light and normal emission of electrons [14]. The vertical error

bars given in PZ represent the single statistic uncertainties determined by Eq. (11). Bottom

panels: Instrumental asymmetry Ains
Z determined by Eq. (10). The vertical error bars given in

Ains
Z represent the single statistic uncertainties determined by Eq. (11). The arrows marked on the

outsides of the peak shown in the top panel of the Set 3 indicate the places where the large wrong

spin polarizations appear due to the instrumental asymmetries which vary in time.
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FIG. 6: (Color online) Comparison of the three independent measurements Set 1, Set 2 and Set3

measured in sequence. Upper panel is for the spin polarization PZ and lower panel is for the

instrumental asymmetry Ains
Z . Set 1 and Set 2 show a good agreement in Ains

Z , but Set 3 deviates

from Set 1 and Set 2 significantly. The consequence is that the spin polarization for Set 3 differs

from Set 1 and Set 2. The line in the lower panel shows Ains
Z = 1 where there is no instrumental

asymmetry.
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FIG. 7: (Color online) Determination of the spin polarization from the valence band photoemission

of Pt(001) measured with unpolarized light of hν=21.2 eV. (a): Eq. (24) is used to determine PY .

(b): Eq. (18) is used to determine PY for the measurement with UV1. The pure instrumental

asymmetry A0
Y is assumed as a line shown in red in the bottom panel. (c): Eq. (18) is used to

determine PY for the measurement with UV2. The pure instrumental asymmetry A0
Y is assumed

as a line shown in red in the bottom panel. For (a)-(c), the error bars for AY and PY are given

by Eq. (26). The spin integrated total intensity I is separated into the partial intensities for spin

parallel I+ (antiparallel I−) to the Y-direction, by means of I± = (I/2)(1±PY ). For I±, the error

bars are not shown because they are smaller than the symbol size.
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FIG. 8: (Color online) Determination of the spin polarization from the core level photoemission

of Pt(001) measured with unpolarized x-ray of hν=1253.6 eV for the two spin components PX in

(a) and PY in (b). For (a) and (b), Eq. (18) is used to determine PX and PY with assumed A0
X

and A0
Y . The error bars for AX , AY and PX , PY are given by Eq. (26). The spin integrated

total intensity I is separated into the partial intensities for spin parallel I+ and antiparallel I− to

X-direction for PX (to Y-direction for PY ), by means of I± = (I/2)(1± PX(Y )). For I±, the error

bars are not shown because they are smaller than the symbol size.
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FIG. 9: (Color online) Determination of the spin polarization from the core level 2p photoemission

of thin film Fe with circularly polarized light (σ+) of hν=1030 eV using the two external magnetic

fields Mup and Mdown. (a): spin polarization is determined using Eq. (27). (b) and (c): spin po-

larizations are determined using Eq. (18) with assumed A0
Y . In determining the spin polarizations,

Eq. (27) and Eq. (18) are normalized by light polarization Pσ [14]. For (a), the error bars ∆Ains
Y

and ∆PY are given by Eq. (11). For (b) and (c), the error bars ∆AY and ∆PY are given by Eq.

(26). For (a), (b), and (c), the spin integrated total intensity I is separated into the partial inten-

sities for spin parallel I+ and antiparallel I− to Y-direction, by means of I± = (I/2)(1±PY ). The

vertical error bars ∆I± given in I+ and I− represent the single statistical uncertainties included.

They are calculated via ∆I± = (I/2)∆PY .
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